Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.17.523798

ABSTRACT

Currently circulating SARS-CoV-2 variants acquired convergent mutations at receptor-binding domain (RBD) hot spots. Their impact on viral infection, transmission, and efficacy of vaccines and therapeutics remains poorly understood. Here, we demonstrate that recently emerged BQ.1.1. and XBB.1 variants bind ACE2 with high affinity and promote membrane fusion more efficiently than earlier Omicron variants. Structures of the BQ.1.1 and XBB.1 RBDs bound to human ACE2 and S309 Fab (sotrovimab parent) explain the altered ACE2 recognition and preserved antibody binding through conformational selection. We show that sotrovimab binds avidly to all Omicron variants, promotes Fc-dependent effector functions and protects mice challenged with BQ.1.1, the variant displaying the greatest loss of neutralization. Moreover, in several donors vaccine-elicited plasma antibodies cross-react with and trigger effector functions against Omicron variants despite reduced neutralizing activity. Cross-reactive RBD-directed human memory B cells remained dominant even after two exposures to Omicron spikes, underscoring persistent immune imprinting. Our findings suggest that this previously overlooked class of cross-reactive antibodies, exemplified by S309, may contribute to protection against disease caused by emerging variants through elicitation of effector functions.

2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.30.486377

ABSTRACT

Coronaviruses use diverse Spike (S) glycoproteins to attach to host receptors and fuse with target cells. Using a broad screening approach, we isolated from SARS-CoV-2 immune donors seven monoclonal antibodies (mAbs) that bind to all human alpha and beta coronavirus S proteins. These mAbs recognize the fusion peptide and acquire high affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha and beta coronaviruses, including Omicron BA.1 variant and bat WIV-1, and reduce viral titers and pathology in vivo. Structural and functional analyses show that the fusion peptide-specific mAbs bind with different modalities to a cryptic epitope which is concealed by prefusion-stabilizing 2P mutations and becomes exposed upon binding of ACE2 or ACE2-mimicking mAbs. This study identifies a new class of pan-coronavirus neutralizing mAbs and reveals a receptor-induced conformational change in the S protein that exposes the fusion peptide region.


Subject(s)
Coronavirus Infections
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.17.484787

ABSTRACT

Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants1-4, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2). Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human Fc-gamma receptor transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.


Subject(s)
COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.15.472828

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global COVID-19 pandemic resulting in millions of deaths worldwide. Despite the development and deployment of highly effective antibody and vaccine countermeasures, rapidly-spreading SARS-CoV-2 variants with mutations at key antigenic sites in the spike protein jeopardize their efficacy. Indeed, the recent emergence of the highly-transmissible B.1.1.529 Omicron variant is especially concerning because of the number of mutations, deletions, and insertions in the spike protein. Here, using a panel of anti-receptor binding domain (RBD) monoclonal antibodies (mAbs) corresponding to those with emergency use authorization (EUA) or in advanced clinical development by Vir Biotechnology (S309, the parent mAbs of VIR-7381), AstraZeneca (COV2-2196 and COV2-2130, the parent mAbs of AZD8895 and AZD1061), Regeneron (REGN10933 and REGN10987), Lilly (LY-CoV555 and LY-CoV016), and Celltrion (CT-P59), we report the impact on neutralization of a prevailing, infectious B.1.1.529 Omicron isolate compared to a historical WA1/2020 D614G strain. Several highly neutralizing mAbs (LY-CoV555, LY-CoV016, REGN10933, REGN10987, and CT-P59) completely lost inhibitory activity against B.1.1.529 virus in both Vero-TMPRSS2 and Vero-hACE2-TMPRSS2 cells, whereas others were reduced (~12-fold decrease, COV2-2196 and COV2-2130 combination) or minimally affected (S309). Our results suggest that several, but not all, of the antibody products in clinical use will lose efficacy against the B.1.1.529 Omicron variant and related strains.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.14.21258567

ABSTRACT

BackgroundCasirivimab and imdevimab (REGEN-COV) markedly reduces risk of hospitalization or death in high-risk individuals with Covid-19. Here we explore the possibility that subcutaneous REGEN-COV prevents SARS-CoV-2 infection and subsequent Covid-19 in individuals at high risk of contracting SARS-CoV-2 by close exposure in a household with a documented SARS-CoV-2-infected individual. MethodsIndividuals [≥]12 years were enrolled within 96 hours of a household contact being diagnosed with SARS-CoV-2 and randomized 1:1 to receive 1200 mg REGEN-COV or placebo via subcutaneous injection. The primary efficacy endpoint was the proportion of participants without evidence of infection (SARS-CoV-2 RT-qPCR- negative) or prior immunity (seronegative) who subsequently developed symptomatic SARS-CoV-2 infection during a 28-day efficacy assessment period. ResultsSubcutaneous REGEN-COV significantly prevented symptomatic SARS-CoV-2 infection compared with placebo (81.4% risk reduction; 11/753 [1.5%] vs. 59/752 [7.8%], respectively; P<0.0001), with 92.6% risk reduction after the first week (2/753 [0.3%] vs. 27/752 [3.6%], respectively). REGEN-COV also prevented overall infections, either symptomatic or asymptomatic (66.4% risk reduction). Among infected participants, the median time to resolution of symptoms was 2 weeks shorter with REGEN-COV vs. placebo (1.2 vs. 3.2 weeks, respectively), and the duration of time with high viral load (>104 copies/mL) was lower (0.4 vs. 1.3 weeks, respectively). REGEN-COV was generally well tolerated. ConclusionsAdministration of subcutaneous REGEN-COV prevented symptomatic Covid-19 and asymptomatic SARS-CoV-2 infection in uninfected household contacts of infected individuals. Among individuals who became infected, REGEN-COV reduced the duration of symptomatic disease, decreased maximal viral load, and reduced the duration of detectable virus. (ClinicalTrials.gov number, NCT04452318.)


Subject(s)
COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.14.21258569

ABSTRACT

Background: Casirivimab and imdevimab administered together (REGEN-COV) markedly reduces the risk of hospitalization or death in high-risk, symptomatic individuals with COVID-19. Here, we report phase 3 results of early treatment of asymptomatic, SARS-CoV-2-positive adults and adolescents with subcutaneous REGEN-COV. Methods: Individuals [≥]12 years of age were eligible if identified within 96 hours of a household contact being diagnosed as SARS-CoV-2-positive; 314 were randomized 1:1 to receive subcutaneous REGEN-COV 1200mg or placebo. The primary endpoint was the proportion of infected participants without evidence of prior immunity (i.e., SARS-CoV-2-RT-qPCR-positive/seronegative) who subsequently developed symptomatic Covid-19 during a 28-day efficacy assessment period. Results: Subcutaneous REGEN-COV 1200mg significantly prevented progression from asymptomatic to symptomatic disease compared with placebo (31.5% relative risk reduction; 29/100 [29.0%] vs. 44/104 [42.3%], respectively; P=0.0380). REGEN-COV also reduced the overall population burden of high viral load weeks (39.7% reduction vs. placebo; 48 vs. 82 total weeks; P=0.0010) and of symptomatic weeks (45.3% reduction vs. placebo; 89.6 vs. 170.3 total weeks; P=0.0273), the latter corresponding to an approximately 5.6-day reduction per symptomatic participant. Six placebo-treated participants had a Covid-19-related hospitalization or ER visit versus none for those receiving REGEN-COV. The proportion of participants receiving placebo who had [≥]1 treatment-emergent adverse events was 48.1% compared to 33.5% for those receiving REGEN-COV, including Covid-19-related (39.7% vs. 25.8%, respectively) or non-Covid-19-related (16.0% vs. 11.0%, respectively) events. Conclusions: Subcutaneous REGEN-COV 1200mg prevented progression from asymptomatic to symptomatic infection, reduced the duration of high viral load and symptoms, and was well tolerated.


Subject(s)
COVID-19 , Death
SELECTION OF CITATIONS
SEARCH DETAIL